Part - 4 :- Students, so now let's add a new tool to our preprocessing toolkit, which is taking care of missing data. So indeed, if we have a look again at our data set data that CSI, we noticed that there is a missing salary here for this specific customer from Germany of 40 years old and who purchased a product. Download Data.csv :- Download S o generally you don't want to have any missing data in your data set for the simple reason that it can cause some errors when training your machinery model and therefore you must handle them. A first way is to just ignore the observation by deleting it. That's one method and this actually works. If you have a large dataset and you know, if you have only one percent missing data, you know, removing one percent of the observations won't change much the learning quality of your model. So one percent is fine, but sometimes you're going to have a lot of missing data and therefore you must handle them the right way. So th...
In this hole journey we will see 100 parts. In this all parts we will see and learn A to Z Machine learning concepts using Python Programming language . So keep with us read my blog post and enjoy Machine Learning.